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Summary. We have investigated muscarinic receptor-operated 
Ca 2+ mobilization in a salivary epithelial cell line, HSG-PA, us- 
ing an experimental approach which allows independent evalua- 
tion of intracellular Ca 2+ release and extracellular Ca 2+ entry. 
The carbachol (Cch) dose response of intracellular Ca 2+ release 
indicates the involvement of a single, relatively low-affinity, 
muscarinic receptor site (K0.5 ~- 10 or 30/XM, depending on the 
method for [Ca2+]i determination). However, similar data for 
Ca 2+ entry indicate the involvement of two Cch sites, one consis- 
tent with that associated with Ca 2+ release and a second higher 
affinity site with K0.5 -< 2.5 b~M. In addition, the Ca z+ entry re- 
sponse observed at lower concentrations of Cch (2.5 ~M) was 
completely inhibited by membrane depolarization induced with 
high K + (>55 mM) or gramicidin D (1 p~M), while membrane 
depolarization had little or no effect on Ca 2+ entry induced by 
100/xM Cch. Another muscarinic agonist, oxotremorine-M (100 
txM; Oxo-M), like Cch, also induced an increase in the [Ca2+]i of 
HSG-PA cells (from 72 _+ 2 to 104 -+ 5 riM). This response was 
profoundly blocked (-75%) by the inorganic Ca -'+ channel 
blocker La 3+ (25-50 b~M) suggesting that Oxo-M primarily mobi- 
lizes Ca 2§ in these cells by increasing Ca 2+ entry. Organic Ca 2+ 
channel blockers (verapamil or diltiazem at I0/xm, nifedipine at 1 
txM), had no effect on this response. The Oxo-M induced Ca 2+ 
mobilization response, like that observed at lower doses of Cch, 
was markedly inhibited (-70-90%) by membrane depolarization 
(high K + or gramicidin D). At 100 b~M Cch the formation of 
inositol trisphosphate (IP3) was increased 55% above basal lev- 
els. A low concentration of carbachol (1 /xM) elicited a smaller 
change in IP3 formation (-25%), similar to that seen with 100 txM 
Oxo-M (--20%). Taken together, these results suggest that there 
are two modes of muscarinic receptor-induced Ca 2+ entry in 
HSG-PA cells. One is associated with IP3 formation and intracel- 
lular Ca zT release and is independent of membrane potential; the 
other is less dependent on IP3 formation and intracellular Ca 2+ 
release and is modulated by membrane potential. This latter 
pathway may exhibit voltage-dependent gating. 

Key Words C a  z+ entry �9 Ca 2+ mobilization - salivary epithe- 
lia,  muscarinic �9 cholinergic �9 membrane potential 

Introduction 

Many hormones and neurotransmitters exert their 
effects by increasing the intracellular free Ca 2+ con- 

centration ([Ca2+]i) 1 of target cells. This increase in 
[Ca2+]i results from both the release of Ca 2+ from an 
intracellular store and from Ca 2+ entry across the 
plasma membrane [e.g., 2, 7, 26]. It is now gener- 
ally accepted that intracellular Ca 2+ release is pri- 
marily due to the generation of IP3 by the activation 
of cell-surface receptors [2, 4], but the mechanisms 
underlying receptor-operated C a  2+ entry are not 
clear [2, 4, 7, 26]. 

It was initially thought that receptor-operated 
Ca ~'+ entry followed Ca 2+ release [26]. In this re- 
gard, several laboratories have provided evidence 
suggesting a role for IP3 and its metabolites, in par- 
ticular IP4 (inositol tetrakisphosphate), in Ca 2+ en- 
try [7, 22]. However, in a recent review, Exton 
summarized evidence indicating that Ca 2+ entry can 
occur before Ca 2+ release or, in some cases, in the 
absence of Ca 2+ release. Based on these and other 
observations, he proposed that G proteins rather 
than IP3 metabolites, may be involved in receptor- 
operated C a  2+ entry [7]. Similarly, recent studies by 
Merritt, Jacob and Hallam [18] argue strongly 
against the existence of a receptor-operated [CaZ+]; - 
activated Ca 2+ entry mechanism. 

Ca 2+ entry pathways across the plasma mem- 
brane, so-called Ca 2+ channels, may be voltage de- 
pendent or voltage independent. C a  2+ channels are 
termed voltage dependent when their opening and 
closing (gating) is regulated by membrane potential; 
typically these channels open in response to mere- 

I A b b r e v i a t i o n s :  Cch, carbachol; IP3, inositol trisphos- 
phate; IP4, inositol tetrakisphosphate; [Caa+]i, intracellular free 
Ca 2+ concentration; EMEM, Eagle's minimal essential medium; 
DTPA, diethylenetriaminepentaacetic acid; BSS, balanced salt 
solution; quin-2/AM, the acetoxymethyl ester of quin-2; fura-2/ 
AM, the acetoxymethyl ester of fura-2; Oxo-M, oxotremorine-M 
acetate; BSA, bovine serum albumin; EGTA, ethylene bis  (oxy- 
ethylenenitrilo) tetraacetic acid; and HEPES, 4-(2-hydroxy- 
ethyl)- 1-piperazineethane-sulfonic acid. 



160 X. He et al.: Two Muscarinic Ca 2" Entry Pathways in HSG-PA Cells 

brane depolarization. Receptor-operated Ca 2+ entry 
pathways are generally considered to be voltage in- 
dependent [6, 17, 27]. However, Ca 2+ influx via 
receptor-operated pathways has been shown to be 
affected by membrane potential in a number of sys- 
tems. For example, high K + attenuates the sus- 
tained Ca 2+ increase induced by Cch in rat parotid 
acinar cells [20]. Similar phenomena have also been 
observed in WEHI-231 B lymphoma cells [16], T 
lymphocytes [8, 24], human neutrophils [34] and 
J774 macrophages [9]. Conversely, voltage-depen- 
dent Ca 2+ channels may be modulated by hor- 
mones, neurotransmitters, and other agents [27]. 
For example, the activation of muscarinic receptors 
selectively inhibits high K+-induced Ca 2+ entry in 
rat sympathetic neurons [36]. This modulation of 
voltage-dependent Ca 2+ channels may also be medi- 
ated by G proteins [14]. Whether these observations 
are indicative of an inter-relationship between volt- 
age-dependent and receptor-operated Ca 2+ chan- 
nels is, at present, unclear. 

We have investigated Cch-induced Ca 2+ mobili- 
zation in a salivary epithelial cell line, HSG-PA, 
derived from a human submandibular gland. We re- 
port here evidence for two modes of muscarinic 
receptor-operated Ca 2+ entry in these cells, one 
which is associated with low agonist (Cch) concen- 
trations (K0.5 -< 2.5/XM) and another which is associ- 
ated with relatively high concentrations of Cch (K0.5 

30/xM). Only the latter component of Ca 2+ entry 
appears to be associated with Ca 2+ release. Ca 2+ 
entry induced by low Cch concentrations is pro- 
foundly inhibited by membrane depolarization (high 
KC1, gramicidin D), whereas that induced by high 
Cch shows little if any inhibition. The Ca 2+ re- 
sponse of these cells to Oxo-M, a muscarinic ago- 
nist which reportedly binds more selectively to 
high-affinity muscarinic receptors [35], is also mark- 
edly inhibited by membrane depolarization. These 
data are consistent with the hypothesis that there 
are two receptor-operated C a  2+ entry pathways in 
the HSG-PA cells, one activated by a low-affinity 
muscarinic receptor which also activates intracellu- 
lar Ca 2+ release and another activated by a high- 
affinity receptor which induces little if any Ca 2+ 
release. This latter pathway may exhibit voltage- 
dependent gating. 

verapamil, diltiazem and nifedipine. Myo[2-3H]inositol (20 
Ci/mmol) was purchased from Amersham and AG l-x8 was 
from Bio-Rad. 

CELL CULTURE 

Experiments were performed on a human submandibular duct 
cell line, HSG-PA, a kind gift from Dr. Mitsunobu Sato [31]. 
HSG-PA cells were cultured at 37~ in a humidified 5% CO2 
atmosphere in EMEM supplemented with 10% newborn calf se- 
rum, 100 U m l l  penicillin G and 100 p~g ml -t streptomycin sul- 
fate (all from Biofluids). Cells were subcultured twice weekly. 
HSG-PA cells from passages 9 to 30 were used in these studies. 
In some experiments with fura-2, HSG-PA cells grown in a mix- 
ture of 50% Dulbecco's MEM and 50% Ham's F12 medium sup- 
plemented as described above, were employed. Results from 
these cells were indistinguishable from those obtained with cells 
grown in EMEM. 

MEASUREMENT OF [Ca2+]i 

[CaZ+]i was measured using the fluorescent dye quin-2 essentially 
as previously described [11]. Briefly, cells were grown to conflu- 
ence and detached by treatment with Ca 2", Mg2+-free Hanks' 
balanced salt solution containing 4 mM EGTA and 10 mM 
HEPES, pH 7.4, for about 7 rain at 37~ The cells were col- 
lected by brief centrifugation (15 sec) and resuspended in BSS 
(NaC1 130 mM; KC1 5 raM; MgCI2 1.0 mM; CaCI2 1.5 raM; glucose 
10 raM; HEPES 20 m s  buffered to pH 7.4 with Tris base). The 
cell suspensions ( -6  x 106 cells ml -~) were preincubated at 37~ 
for 5 min and then were incubated with 10 p.M quin-2/AM for a 
further 20 rain. Thereafter, the cells were washed twice and re- 
suspended in BSS containing 1 mg ml -l BSA and kept at room 
temperature. Just before fluorescence measurements were per- 
formed, the cells were again centrifuged and resuspended ( - 2  x 
106 cells ml-~) in the same medium except where indicated. Fluo- 
rescence was measured at 37~ in a SLM-8000 microprocessor- 
controlled spectrofluorimeter as previously described [13]. Fluo- 
rescence due to external quin-2 was determined in each 
experiment using a 50 nM Mn 2+ and 100 nM DTPA quench proto- 
col [28]. Calibration of the fluorescence signal and calculation of 
[Ca2+]~ were as described by Tsien, Pozzan and Rink [32]. 

Cells were also prepared for [Ca2+]i measurements with 
fura-2 as described above for quin-2 except that loading with the 
dye was carried out by incubation with 1-~M fura-2/AM for 20 
rain at 37~ Fura-2 fluorescence measurements were performed 
and analyzed as described by Grynkiewicz, Poenie and Tsien 
[10] using excitation wavelengths of 340 and 380 nm and measur- 
ing emission at 510 nm. 

ANALYSIS OF INOSITOL PHOSPHATES 

Materials and Methods 

MATERIALS 

Quin-2/AM and DTPA were purchased from Calbiochem. Fura- 
2/AM was from Molecular Probes. The following compounds 
were from Sigma: EGTA, HEPES, BSA, Cch, gramicidin D, 

Confluent cells were labeled with [3H]myoinositol (4/xCi ml-t; 12 
ml/100-ram dish) in growth medium for 40 hr. Labeled cells were 
then detached and loaded with quin-2/AM as described above. 
Just before measurement of inositol phosphates, the cells were 
centrifuged and resuspended ( - 2  x 106 cells ml -~) in a Ca2+-free 
medium (BSS without Ca 2+, containing BSA). Cells (1.5 ml) 
were then incubated at 37~ with various agents for 20 sec. Incu- 
bations were terminated by adding 250 ~1 of 100% trichloroacetic 
acid, after which the cells were vortexed and kept on ice for at 
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least 10 rain, and then centrifuged for 15 sec. The supernatant 
was removed, extracted four times with 5 volumes of ethyl ether, 
neutralized with 0.1 N NaOH and placed on a 1-ml ion-exchange 
column (AG 1-• 200-400 mesh, formate form), Different 
[3H]inositol phosphates were eluted from the column as de- 
scribed previously [3]. The radioactivity in each 5-ml eluate was 
determined by liquid scintillation spectrometry and the results 
were expressed as cpm/3 • 106 cells. All data are presented as 
mean _+ SE and were tested for statistical significance by Stu- 
dent's t test. 

Results 

EFFECT OF C c h  ON Ca 2§ RELEASE AND 

C a  2+ ENTRY 

Figure 1 shows typical Cch-induced changes in 
[Ca2+]i in HSG-PA cells. For  cells in a complete 
Ca2+-containing medium, stimulation with 100 ffM 
Cch resulted in a rapid rise in [Ca2+]i from 121 _+ I0 
nM to 560 --+ 59 nM (n = 15) within 20 sec. [Ca2+]i 
then declined to resting levels within about 5 min 
(Fig. la). This response was fully inhibited by pre- 
treatment of  cells with 10/zM atropine (not shown; 
[I1]). Cch-induced Ca 2§ mobilization was further 
examined using a previously established approach 
[12] in which cells were first stimulated with Cch in 
a nominally Ca>-f ree  medium to observe intracellu- 
lar Ca 2+ release; thereafter,  Ca 2+ was re-added to 
the incubation medium to observe extracellular 
Ca 2+ entry (Fig. lb,c). After Cch (100 htM) stimula- 
tion in a Ca2*-free medium, [Ca2+]i rapidly in- 
creased from 104 -+ 11 nM to 329 ---+ 38 nM (n = 15), 
declining to a value close to initial levels within 2.5 
min (Fig. lb). This response is believed to represent 
Ca 2§ release from intracellular Ca 2+ stores. A sec- 
ond rise of [Ca2+]i (from 84 -+ 6 nM to 244 --+ 17 riM; 
n = 15) was evoked within 40 sec of Ca 2+ reintro- 
duction into the medium (final [Ca2+], 1.5 mM, typi- 
cally added 3 min after stimulation with Cch, Fig. 
lb). This second [Ca2§ rise declined relatively 
slowly, as in Fig. la ,  returning to resting levels after 
about 5 min, and is considered to represent Ca 2+ 
entry across the plasma membrane.  In the absence 
of Cch, the addition of Ca 2§ to this nominally Ca 2+- 
free medium results in no alteration in [Ca2+]~ from 
resting levels (not shown). Thus, at 100 /xM Cch, 
both the peak Ca 2+ release and Ca 2+ entry re- 
sponses are - 3  times basal values (see also ref. 12). 
We have previously shown that atropine completely 
blocks both of the responses shown in Fig. lb [1l]. 

When cells were stimulated in a Ca2+-free me- 
dium with a lower Cch concentrat ion (e.g., 2.5/zM. 
Fig. lc),  the first response (Ca 2+ release) appeared 
relatively more diminished (average peak increase 
in [Ca2+]i, 24 -+ 11 riM, n = 7) than the second (Ca 2+ 
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Fig. 1. The effect of Cch on [Ca2+]i transients in HSG-PA cells. 
[Ca2+]i was measured by quin-2 fluorescence as described in Ma- 
terials and Methods. Cells were preincubated in a complete me- 
dium (a) or a Ca2+-free medium (b,c) for 5 rain at 37~ and then 
Cch (a,b, 100/xM; c, 2.5 /zM) and Ca 2+ (1.5 raM) were added as 
indicated by the arrows. The traces shown here are typical of 15 
(a,b) or six (c) experiments performed with different cell prepa- 
rations. Similar results to those shown in b are obtained with this 
protocol when cells are incubated in a Ca2+-free medium to 
which 0.5 mM EGTA has been added [12]. See text for quantita- 
tion of [Ca>]i 

entry; average peak increase in [Ca2+]i, 39 _+ 10 nM, 
n = 7). This observation is illustrated more quanti- 
tatively in Fig. 2. Here  we analyzed the effect of 
Cch concentrat ion on peak [Ca2+]i due to Ca 2+ re- 
lease and Ca 2§ entry using a Scatchard plot. The 
points corresponding to Ca 2+ release fall on a good 
straight line (Fig. 2a), consistent with the existence 
of a single relatively low-affinity Cch site (K0.5 ~ 30 
tXM, see figure caption) associated with this phe- 
nomenon.  The Scatchard plot of the Ca 2+ entry 
data, on the other hand, is clearly curvilinear indi- 
cating the existence of  (at least) two Cch-associated 
components  (Fig. 2b). These Ca 2§ entry data are 
consistent with a two-site model; a low-affinity site 
with K0.5 close to that of the Cch site associated 
with Ca 2+ release, and a high-affinity site with 
K0.5 -< 2.5 /XM (see figure caption). 

Figure 2c shows the Scatchard analysis of Ca 2+ 
release data obtained in a similar fashion to Fig. 2a 
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Fig. 2. Effect of different concentrations of Cch on Ca 2- release 
and Ca 2- entry in HSG-PA cells. The data are illustrated as 
Scatchard plots [301. (a,b) Cells were incubated and stimulated 
with Cch as in Fig. lb,c, using quin-2 to measure the Ca > re- 
sponses. The peak values of the first Ca z- response (Ca 2- re- 
lease), determined 20 sec after stimulation with Cch, are shown 
in a. The peak values of the second Ca z- response (Ca > entry) 
determined 40 sec after re-addition of Ca 2- are shown in b. (c) 
Shows the peak values of Ca 2- release measured with fura-2 in 
complete BSS containing in addition 1.64 mM EGTA. The lines 
drawn through the data points in a and c were obtained by linear 
least-squares regression and give K05 values of 27 _+ 4 /*M and 
8.8 -+ 0.2/*M, respectively, for the effect of Cch. The line drawn 
through the data points in b corresponds to a two-site mode/with 
K~.5 values for Cch of 1.5 and 30/*M. This line was fit by trial and 
error. Data points shown here are the mean + ss of at least five 
separate experiments (a,b) or three separate experiments (c) per- 
formed with different cell preparations 

but  using the  m o r e  sens i t ive  Ca 2+ ind ica to r  fura-2 
[10]. T h e s e  e x p e r i m e n t s  were  ca r r i ed  out  in o r d e r  to 
tes t  the  poss ib i l i t y  tha t  a high-aff ini ty Cch si te asso-  
c ia ted  with Ca 2. r e l ease  was o v e r l o o k e d  in Fig.  2a 
owing  to pos s ib l e  [Ca2+]i buffer ing  by  quin-2.  T h e s e  
da t a  show c o m p a r a b l e  ma x ima l  levels  of  Ca  2+ re- 
lease  ( i .e . ,  s imi lar  i n t e r cep t s  on the hor izon ta l  axis  
o f  the  S c a t c h a r d  plot)  bu t  h igher  levels  of  r e lease  at 
low [Cch].  This  resul t  is c ons i s t e n t  with the  hypo th -  
esis  tha t  h igher  levels  o f  Ca  2+ re l ease  are  o b s e r v e d  
with fura-2 owing  to the  l ower  levels  of  i nd ica to r  
used  and the  c o n c o m i t a n t  r educ t ion  in buffer ing 
o f  [Ca2+]~. H o w e v e r ,  the  S c a t c h a r d  plot  of  these  
da t a  is n e v e r t h e l e s s  l inear  ind ica t ing  tha t  a s econd  
Cch si te a s s o c i a t e d  with Ca 2+ re l ease  is not  un- 
m a s k e d  by  this  m a n e u v e r  and thus  p rov id ing  s t rong 
e v i d e n c e  tha t  the  high-aff ini ty  Cch si te a s soc i a t ed  
with Ca 2+ en t ry  in Fig.  2b is not  a s s o c i a t e d  with 
Ca  2+ re lease .  Owing  to the  rap id  loss  of  fura-2 by  
the  H S G - P A  cel ls  at  37~ (not shown), we have  
e m p l o y e d  the Jess p e r m e a n t  d y e  quin-2 in the  subse-  
quent  e x p e r i m e n t s  r e p o r t e d  here .  

EFFECTS OF MEMBRANE DEPOLARIZATION ON 

C a  2+ RELEASE AND C a  2+ ENTRY 

W h e n  H S G - P A  cel ls  were  i ncuba t ed  in a high K+ 
m e d i u m  (>55  mM), no s ignif icant  effects  were  ob- 
s e rved  on the  two p h a s e s  of  Ca  2+ mobi l i za t ion  in- 
d u c e d  b y  100/xM Cch ( re lease ,  f rom 98 • 17 nm to 
329 + 92 rim, and  en t ry  f rom 83 • 11 nM to 216 -- 43 
riM; n = 7) e x c e p t  for  a sl ight  de l ay  in reach ing  peak  
va lues  for  the  la t te r  r e s p o n s e  ( a p p r o x i m a t e l y  1 rain 
af ter  add i t i on  of  C a  2+ in high K ~ m e d i u m ,  Fig.  3a,  
us. a p p r o x i m a t e l y  40 sec in BSS ,  Fig.  lb). How-  
ever ,  the  Ca 2+ en t ry  r e s p o n s e  i nduc e d  by  2.5 /xM 
Cch was  c o m p l e t e l y  inhib i ted  by  high K* (Fig. 3b 
c o m p a r e d  with Fig.  l c). This  effect  o f  high K* on 
Ca 2+ e n t r y  a p p e a r e d  to be  due  to m e m b r a n e  depo-  
l a r iza t ion  s ince  g ramic id in  D (1 /xM) had a s imi lar  
effect  (not shown). T h e s e  da t a  fu r the r  suppor t  the 
con ten t ion  that  the  c o m p o n e n t  of  Ca  2+ en t ry  ob- 
se rved  at  low [Cch] in Fig.  2b is m e d i a t e d  by a 
d i f ferent  p r o c e s s  than  that  o b s e r v e d  at high [Cch].  

O x o - M  INDUCED C a  2+ MOBILIZATION IN 

H S G - P A  CELLS 

To fu r the r  inves t iga te  the  poss ib i l i ty  that  the  Ca > 
en t ry  o b s e r v e d  at  low [Cch] is r e la ted  to a high- 
affinity musc a r in i c  r e c e p t o r  we inves t iga ted  the  ef- 
fec ts  o f  O x o - M ,  a musc a r in i c  agon is t  be l i eved  to 
se l ec t ive ly  bind to high-aff ini ty  musca r in i c  r e c e p t o r  
si tes  [35]. As  shown  in Fig.  4a, O x o - M  (100 /,M) 
e v o k e d  a rap id  i n c r e a s e  in [Ca2+]i, peak ing  at  abou t  
30-40  sec and dec l in ing  back  to initial levels  within 
5 min.  The  a ve ra ge  i nc rea se  in Ca  2+ was f rom 72 +- 
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Fig. 3. Effect of membrane depolarization on Cch-induced Ca 2+ 
release and Ca > entry in HSG-PA cells. Quin-2 fluorescence 
transients were measured exactly as in Fig. Ib,c except cells 
were incubated in a high K + medium (135 mM). Cch (a, 100/*M; 
b, 2.5 /xM) and Ca 2. (1.5 mM) were added as shown by the ar- 
rows. The traces shown here are typical of experiments per- 
formed with at least three different cell preparations. ,~'ee text for 
quantitation of [Ca2+Ji 

2 nM to 104 + 5 riM, P < 0.001, n - 8. This response 
was completely inhibited by atropine (Fig. 4b) and 
appeared to result mainly from Ca 2+ entry across 
the plasma membrane since it was profoundly 
blocked (~75%) by 25-50/ ,M La 3+ (Fig. 4c; average 
increase in [Ca 2+] after La 3+ was from 46 -+ 8 nM to 
54 _+ 9 riM, n = 3). As previously shown by us, La 3+ 
potently blocks Ca 2+ entry in HSG-PA cells and is 
without effect on intracellular Ca 2+ signals moni- 
tored with quin-2 in these cells (see Fig. 3b and 
Table 2 in ref. 12). In addition, the rise in [Ca2+]i 
induced by Oxo-M was substantially inhibited by 
preincubating the cells in either a high K + medium 
(~90%; Fig. 5a, average increase in [Ca2+]~, 4 _+ 5 
ng ,  n = 5) or a physiologic medium containing 
gramicidin D (~70%; Fig. 5b, average increase in 
[Ca2+]~, 10 • 4 nm), However ,  the organic Ca > 
channel blockers verapamil (10 /xM), diltiazem (10 
/,m) and nifedipine (1 /xM) appeared to have no sig- 
nificant effects on the Oxo-M response (Fig. 5c-e). 
The entry of Ca 2+ induced by both low (2.5/,ZM) and 
high (100/xM) concentrat ions of Cch was similarly 
unaffected by these agents ([12]; data not shown). 

T H E  E F F E C T  OF C c h  AND O x o - M  ON 

IP3 G E N E R A T I O N  

We next examined the ability of Cch and Oxo-M to 
induce the formation of |P3 in HSG-PA cells. As 
shown in the Table, 100/zM Cch increases IP3 pro- 
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Fig. 4. Effect of Oxo-M on [Ca2+]i in HSG-PA cells. Confluent 
cells were loaded with 10 btM quin-2/AM, incubated in a com- 
plete medium, and [Ca > ]~ was measured as described under Ma- 
terials and Methods. Oxo-M (100/xm); atropine (Air, 10/*M), and 
La > (50/*M) were added at the arrows. The traces shown here 
are typical of experiments performed with at least three cell 
preparations. See text for quantitation of [Ca > ]~ 

Table. PH]IP3 generation due to Cch and Oxo-M in HSG-PA 
cells ~ 

Experimental PH ]IP~ generation 
conditions (% control) 

Control 100 
100 /zM Cch hl54 + 19 
I /LM Cch H26 -+ 9 
100 /zM Oxo-M q20 -+ 14 

Cells were incubated with buffer (control) or with the concen- 
trations of Cch or Oxo-M indicated for 20 sec al 37~ Thereafter 
incubations were terminated and analyzed for [~H]IP~ generation 
as described in Materials and Methods. The data shown here are 
the mean + sE from at least three separate experiments. Control 
IP~ production 3958 -+ 366 cpm/3 x 10 (, cells, n = 6. 
b Significantly different from control, P < 0.05. 

Not significantly different from control. 

duction by - 5 5 %  within 20 sec. A low concentra- 
tion (1 p.M) of Cch resulted in a smaller increase in 
IP3 above basal levels (-25%). Similar results were 
obtained with 100/XM Oxo-M ( - 2 0 %  increase). It is 
generally accepted that intracellular Ca 2~ release 
from intracellular stores is the result of the second 
messenger IP3 acting at its receptor on these stores 
[2]. It has been suggested, but not unequivocally 
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Fig. 5. Effect of  membrane depolarization and Ca 2§ channel 
blockers on Oxo-M induced Ca > mobilization in HSG-PA cells. 
[Ca2+]i was measured as in Fig. 4. Oxo-M (100 /xM), KCI (55 
mM), gramJcidin D (Gra, I /~M), verapamil (Ver, 10 /xM), dil- 
tiazem (Dil, 10/zM), and nifedipine (Nif, 1 /~M) were added at the 
arrows. The traces shown are typical of experiments performed 
with at least three cell preparations. See text for quantitation of 
[Ca2+]i 

proven, that receptor-mediated Ca 2+ entry is medi- 
ated by IP3 and its metabolite IP4 [22]. The smaller 
changes in IP3 production are consistent both with 
the lower Ca 2+ release response seen in HSG-PA 
cells with 2.5 /*M Cch (Fig. 2) and with the appar- 
ently small Ca 2+ release component  observed with 
100/XM Oxo-M (Fig. 4c). 

Discussion 

The data presented in this report are consistent with 
an hypothesis suggesting that in the human salivary 
epithelial cell line, HSG-PA, there exist two modes 

by which a muscarinic agonist may stimulate Ca 2~ 
entry. One, seen only at higher concentrations of 
Cch, is associated with a marked increase in IP3 
formation and pronounced release of Ca 2+ from in- 
tracellular stores, and is unaffected by membrane 
depolarization. The other, seen at low concentra- 
tions of Cch or with Oxo-M use, is associated with 
smaller increases in IP3 formation and little release 
of Ca 2+ from intracellular stores, and is blocked by 
membrane depolarization. 

A dissociation between Ca 2+ release and entry 
was previously observed by us in HSG-PA cells 
treated with an active phorbol ester [I 1], by Valone 
and Johnson in platelets [33], and by Owen in mu- 
rine lymphocytes [25]. Similarly, others have used 
low concentrations of agonists to induce Ca 2+ entry 
without detectable inositol phosphate generation or 
Ca 2+ release (for review, s e e  ref. 7). Furthermore,  
some recent experiments,  using rapid time resolu- 
tion or Mn 2+ quench procedures,  indicate that Ca 2+ 
entry can occur  before Ca 2+ release [5, 18, 19, 29]. 
All of these observations are consistent with the 
suggestion that there are two distinct receptor-oper- 
ated Ca 2+ entry mechanisms; one associated with 
the receptor-induced Ca 2+ release response (and 
likely related to IP3 generation) and the other disso- 
ciated from this response. 

As mentioned earlier, there may exist some 
overlap between the properties of classical voltage- 
gated Ca 2+ channels and receptor-operated Ca 2+ 
channels [I, 6, 8, 9, 14, 16, 17, 20, 24, 27, 34, 36]. 
However ,  a direct relationship between membrane 
potential gating and receptor-operated Ca ~+ entry 
has not been clearly established. There are a few 
reports, also cited earlier, which suggest that Ca 2+ 
influx via receptor-operated pathways is modulated 
by membrane potential in some systems [8, 9, 16, 
20, 24, 34]. It is possible that the reduction in Ca 2+ 
entry due to membrane depolarization observed in 
some of  these systems can be simply explained as 
the result of a reduced electrochemical gradient for 
Ca 2+ which is driving Ca 2+ entry via an electrogenic 
Ca 2+ channel. However ,  it seems unlikely that this 
effect can account  for the profound inhibition of 
Ca 2+ entry observed here at low Cch concentrations 
or with Oxo-M. The contribution of the chemical 
gradient for Ca 2+ to the electrochemical potential 
difference of this cation in HSG-PA cells is = 
( R T / F ) l n ( [ C a > ] o / [ C a 2 + ] i )  ~ 260 mY) (assuming 
[Ca2+]i = 100 riM). Thus a membrane potential of 
- 5 0  mV can only account  for - 3 0 %  of the total 
driving force for electrogenic Ca 2+ entry,  and even 
a complete depolarization of  the membrane (which 
is unlikely under the experimental conditions em- 
ployed here) would be expected to yield substantial 
residual Ca 2+ influx. Although considerable further 
experimental work is obviously required on this 
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point, these data suggest that the Ca 2+ entry path- 
way associated with low Cch concentrations or use 
of Oxo-M in HSG-PA cells may be voltage gated. 
This does not, however, appear to be a classical 
voltage-dependent Ca > channel since it is appar- 
ently closed rather than opened by membrane depo- 
larization, and since it is not affected by the organic 
channel blockers verapamil, diltiazem and nifedi- 
pine (although recently voltage-dependent channels 
which are insensitive to these agents have been 
identified, s e e  ref. 21). 

At least four subtypes of muscarinic receptors 
are known to exist and it has been suggested that 
each subtype may couple to an unique type of effec- 
tot system leading to various biochemical and phys- 
iological responses [15]. Since Oxo-M selectively 
binds to high-affinity receptors [23, 351, it would 
seem reasonable to hypothesize, based on our 
results, that the low-affinity type of muscarinic re- 
ceptor may induce Ca 2+ entry via a mechanism as- 
sociated with intracellular Ca 2+ release, while the 
high-affinity type of muscarinic receptor may in- 
duce Ca 2+ entry via a mechanism dissociated from 
intracellular Ca 2+ release. 

The authors thank Drs. J.E. Melvin, V.J. Horn, and 1.S. Am- 
budkar for their many helpful discussions during the period of 
this work. We are especially grateful to Dr. Horn for help with 
experiments studying inositol trisphosphate formation. 
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